Design and evaluation of 6T SRAM layout designs at modern nanoscale CMOS processes

نویسندگان

  • Dimitrios Balobas
  • Nikos Konofaos
چکیده

Six layout variations of the 6T SRAM cell are examined and compared. The comparison includes four conventional cells, plus the thin cell commonly used in industry and a recently proposed ultra-thin cell. The layouts of the cells are presented and corresponding memory arrays are implemented at 65, 45 and 32 nm using 3-metal CMOS n-well process. The obtained designs are compared in terms of area, power dissipation and read/write delay, using proper BSIM4 level simulations. The thin cell presents the best results regarding area efficiency and delay. In terms of power dissipation, it performs poorly at 65 and 45 nm but appears to be the best at 32 nm, presenting great improvement with downscaling. The ultrathin cell provides a more lithographically friendly alternative to the thin cell, with lower power dissipation at 65 and 45 nm and higher at 32 nm. Overall, it performs worse in area and power relative to most conventional designs and gets worse with downscaling. Keywords—SRAM; layout; 6T cell; memory array; delay; power;

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

12th Int'l Symposium on Quality Electronic Design

Bias Temperature Instability (BTI) causes significant threshold voltage shift in MOSFET using Hafnium-dioxide (HfO2) High-k dielectric material. Negative BTI and Positive BTI are two types of BTI effects observed in p-channel and n-channel MOSFET. BTI affects the stability and reliability of conventional six transistor (6T) SRAM design in nano-scale CMOS technology. Eight transistor (8T) and Te...

متن کامل

Low Leakage Asynchronous PP based Single Ended 8T SRAM bit-cell at 45nm CMOS Technology

Low power SRAM memory designs has become challenging for portable device applications. Semiconductor/ VLSI industry growth has exponentially demanding low leakage power SRAM designs for high performance chips and microprocessors. To get optimized standard cell memory design for battery operated devices at deep sub micron CMOS technology, a low leakage Asynchronous 8T SRAM is proposed. In this p...

متن کامل

A new asymmetric 6T SRAM cell with a write assist technique in 65 nm CMOS technology

A new asymmetric 6T-SRAM cell design is presented for low-voltage low-power operation under process variations. The write margin of the proposed cell is improved by the use of a new write-assist technique. Simulation results in 65 nm technology show that the proposed cell achieves the same RSNM as the asymmetric 5T-SRAM cell and 77% higher RSNM than the standard 6T-SRAM cell while it is able to...

متن کامل

Multiple-Cell-Upset Tolerant 6T SRAM Using NMOS-Centered Cell Layout

This paper presents a proposed NMOS-centered 6T SRAM cell layout that reduces a neutron-induced multiple-cell-upset (MCU) SER on a same wordline. We implemented an 1-Mb SRAM macro in a 65-nm CMOS process and irradiated neutrons as a neutron-accelerated test to evaluate the MCU SER. The proposed 6T SRAM macro improves the horizontal MCU SER by 67–98% compared with a general macro that has PMOS-c...

متن کامل

Design and Verification of Low Power SRAM using 8T SRAM Cell Approach

SRAM cell stability will be a primary concern for future technologies due to variability and decreasing power supply voltages. Advances in chip designing have made possible the design of chips at high integration and fast performance. Lowering power consumption and increasing noise margin have become two central topics in every state of SRAM designs.The Conventional 6T SRAM cell is very much pr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015